Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.

Identifieur interne : 000439 ( Main/Exploration ); précédent : 000438; suivant : 000440

Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.

Auteurs : Wenming Jiang [République populaire de Chine] ; Jiao Wu ; Yali Zhang ; Ling Yin ; Jiang Lu

Source :

RBID : pubmed:25643917

Descripteurs français

English descriptors

Abstract

WRKY transcription factors (TFs) play important roles in many plant processes, including responses to biotic and abiotic stresses. In the present study, Muscadinia rotundifolia MrWRKY30 dramatically accumulated in grapevine leaves in response to inoculation of Plasmopara viticola, a pathogen causing grapevine downy mildew disease. Similar responses were also found on grapevines treated with exogenous SA/JA/ET. Ectopic expression of MrWRKY30 in Arabidopsis thaliana "COL0" enhanced its resistance to downy mildew pathogen Peronospora parasitica. Pathogenesis-related (PR) genes, including AtPR1, AtPR4, AtPR5, and AtPDF1.2, were significantly upregulated in transgenic A. thaliana after P. parasitica inoculation. In the mean time, two critical genes in SA and JA signaling pathways, AtEDS5 and AtJAR1, were abundantly expressed as well, indicating that MrWRKY30 may enhance disease resistance of A. thaliana through SA and JA defense system. The transgenic A. thaliana plants also enhanced tolerance to cold stress accompanied with upregulation of AtCBF1, AtCBF3, AtICE1, and AtCOR47. MrWRKY30 might protect A. thaliana from cold damage by activating the AtCBF-mediated signaling pathway to induce the downstream AtCOR47 gene. Interestingly, the transgenic seedlings had a negative effect on salt tolerance. Reverse transcription PCR (RT-PCR) analysis revealed that antioxidant enzyme genes AtAPX (ascorbate peroxidase), AtCAT (catalase), and AtGST (glutathione-S-transferase) were suppressed in transgenic plants, which may lead to reactive oxygen species (ROS)-mediated sensitivity to salt stress.

DOI: 10.1007/s00709-015-0769-6
PubMed: 25643917


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.</title>
<author>
<name sortKey="Jiang, Wenming" sort="Jiang, Wenming" uniqKey="Jiang W" first="Wenming" last="Jiang">Wenming Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Jiao" sort="Wu, Jiao" uniqKey="Wu J" first="Jiao" last="Wu">Jiao Wu</name>
</author>
<author>
<name sortKey="Zhang, Yali" sort="Zhang, Yali" uniqKey="Zhang Y" first="Yali" last="Zhang">Yali Zhang</name>
</author>
<author>
<name sortKey="Yin, Ling" sort="Yin, Ling" uniqKey="Yin L" first="Ling" last="Yin">Ling Yin</name>
</author>
<author>
<name sortKey="Lu, Jiang" sort="Lu, Jiang" uniqKey="Lu J" first="Jiang" last="Lu">Jiang Lu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25643917</idno>
<idno type="pmid">25643917</idno>
<idno type="doi">10.1007/s00709-015-0769-6</idno>
<idno type="wicri:Area/Main/Corpus">000466</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000466</idno>
<idno type="wicri:Area/Main/Curation">000466</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000466</idno>
<idno type="wicri:Area/Main/Exploration">000466</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.</title>
<author>
<name sortKey="Jiang, Wenming" sort="Jiang, Wenming" uniqKey="Jiang W" first="Wenming" last="Jiang">Wenming Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Jiao" sort="Wu, Jiao" uniqKey="Wu J" first="Jiao" last="Wu">Jiao Wu</name>
</author>
<author>
<name sortKey="Zhang, Yali" sort="Zhang, Yali" uniqKey="Zhang Y" first="Yali" last="Zhang">Yali Zhang</name>
</author>
<author>
<name sortKey="Yin, Ling" sort="Yin, Ling" uniqKey="Yin L" first="Ling" last="Yin">Ling Yin</name>
</author>
<author>
<name sortKey="Lu, Jiang" sort="Lu, Jiang" uniqKey="Lu J" first="Jiang" last="Lu">Jiang Lu</name>
</author>
</analytic>
<series>
<title level="j">Protoplasma</title>
<idno type="eISSN">1615-6102</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis (microbiology)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Cold-Shock Response (MeSH)</term>
<term>Disease Resistance (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Peronospora (physiology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Growth Regulators (physiology)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Salt Tolerance (MeSH)</term>
<term>Seedlings (metabolism)</term>
<term>Seedlings (microbiology)</term>
<term>Transcription Factors (genetics)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (microbiologie)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Facteur de croissance végétal (physiologie)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Peronospora (physiologie)</term>
<term>Plant (microbiologie)</term>
<term>Plant (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Réponse au choc froid (MeSH)</term>
<term>Résistance à la maladie (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Tolérance au sel (MeSH)</term>
<term>Vitis (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Facteurs de transcription</term>
<term>Protéines d'Arabidopsis</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Plants, Genetically Modified</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Maladies des plantes</term>
<term>Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Diseases</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Plant</term>
<term>Protéines d'Arabidopsis</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Facteur de croissance végétal</term>
<term>Peronospora</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Peronospora</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cold-Shock Response</term>
<term>Disease Resistance</term>
<term>Gene Expression</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Salt Tolerance</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Expression des gènes</term>
<term>Gènes de plante</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réponse au choc froid</term>
<term>Résistance à la maladie</term>
<term>Séquence d'acides aminés</term>
<term>Tolérance au sel</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">WRKY transcription factors (TFs) play important roles in many plant processes, including responses to biotic and abiotic stresses. In the present study, Muscadinia rotundifolia MrWRKY30 dramatically accumulated in grapevine leaves in response to inoculation of Plasmopara viticola, a pathogen causing grapevine downy mildew disease. Similar responses were also found on grapevines treated with exogenous SA/JA/ET. Ectopic expression of MrWRKY30 in Arabidopsis thaliana "COL0" enhanced its resistance to downy mildew pathogen Peronospora parasitica. Pathogenesis-related (PR) genes, including AtPR1, AtPR4, AtPR5, and AtPDF1.2, were significantly upregulated in transgenic A. thaliana after P. parasitica inoculation. In the mean time, two critical genes in SA and JA signaling pathways, AtEDS5 and AtJAR1, were abundantly expressed as well, indicating that MrWRKY30 may enhance disease resistance of A. thaliana through SA and JA defense system. The transgenic A. thaliana plants also enhanced tolerance to cold stress accompanied with upregulation of AtCBF1, AtCBF3, AtICE1, and AtCOR47. MrWRKY30 might protect A. thaliana from cold damage by activating the AtCBF-mediated signaling pathway to induce the downstream AtCOR47 gene. Interestingly, the transgenic seedlings had a negative effect on salt tolerance. Reverse transcription PCR (RT-PCR) analysis revealed that antioxidant enzyme genes AtAPX (ascorbate peroxidase), AtCAT (catalase), and AtGST (glutathione-S-transferase) were suppressed in transgenic plants, which may lead to reactive oxygen species (ROS)-mediated sensitivity to salt stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25643917</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1615-6102</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>252</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Protoplasma</Title>
<ISOAbbreviation>Protoplasma</ISOAbbreviation>
</Journal>
<ArticleTitle>Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.</ArticleTitle>
<Pagination>
<MedlinePgn>1361-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00709-015-0769-6</ELocationID>
<Abstract>
<AbstractText>WRKY transcription factors (TFs) play important roles in many plant processes, including responses to biotic and abiotic stresses. In the present study, Muscadinia rotundifolia MrWRKY30 dramatically accumulated in grapevine leaves in response to inoculation of Plasmopara viticola, a pathogen causing grapevine downy mildew disease. Similar responses were also found on grapevines treated with exogenous SA/JA/ET. Ectopic expression of MrWRKY30 in Arabidopsis thaliana "COL0" enhanced its resistance to downy mildew pathogen Peronospora parasitica. Pathogenesis-related (PR) genes, including AtPR1, AtPR4, AtPR5, and AtPDF1.2, were significantly upregulated in transgenic A. thaliana after P. parasitica inoculation. In the mean time, two critical genes in SA and JA signaling pathways, AtEDS5 and AtJAR1, were abundantly expressed as well, indicating that MrWRKY30 may enhance disease resistance of A. thaliana through SA and JA defense system. The transgenic A. thaliana plants also enhanced tolerance to cold stress accompanied with upregulation of AtCBF1, AtCBF3, AtICE1, and AtCOR47. MrWRKY30 might protect A. thaliana from cold damage by activating the AtCBF-mediated signaling pathway to induce the downstream AtCOR47 gene. Interestingly, the transgenic seedlings had a negative effect on salt tolerance. Reverse transcription PCR (RT-PCR) analysis revealed that antioxidant enzyme genes AtAPX (ascorbate peroxidase), AtCAT (catalase), and AtGST (glutathione-S-transferase) were suppressed in transgenic plants, which may lead to reactive oxygen species (ROS)-mediated sensitivity to salt stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Wenming</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Jiao</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yali</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Ling</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Jiang</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>02</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Austria</Country>
<MedlineTA>Protoplasma</MedlineTA>
<NlmUniqueID>9806853</NlmUniqueID>
<ISSNLinking>0033-183X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058639" MajorTopicYN="N">Cold-Shock Response</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044742" MajorTopicYN="N">Peronospora</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055049" MajorTopicYN="N">Salt Tolerance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25643917</ArticleId>
<ArticleId IdType="doi">10.1007/s00709-015-0769-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Planta. 2012 Nov;236(5):1485-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22798060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Jun 6;16(11):R424-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16753558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 Oct 11;7:539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Apr;28(4):683-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19125253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(8):1999-2010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17456504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1819(2):120-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Oct 28;10:234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jul 22;9:96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19622176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1998 Oct;1(5):404-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1994 Sep 28;244(6):563-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7969025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Dec 19;10:281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21167067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jul;133(3):481-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2008 Apr;18(4):508-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18071364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Dec;10 (12 ):2103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9836748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Feb;122(2):481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10677441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2007 Nov;131(3):434-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18251882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Apr;16(4):295-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12744458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Jun 20;8:68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18570649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Oct;83(3):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23794142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Feb;16(2):319-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1980 Oct 10;8(19):4321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7433111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:135-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Aug;25(8):836-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16528562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2014 Dec;14(4):741-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25154381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2015 Mar;153(3):365-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25132131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2076-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Feb;13(2):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18261950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1789-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 May 1;16(9):1139-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12000796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Apr;65(6):1513-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24510937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 May-Jun;46(5-6):533-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18406156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Apr;39(4):4553-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21938429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Apr 22;14:103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24755338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Jan;51(1):21-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12602888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Mar;10(3):103-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 May;5(5):199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10785665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 May;15(5):247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20304701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Jan;69(1-2):91-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18839316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Oct;3(10):1085-1094</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12324583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Oct;12(10):444-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Aug;63(3):417-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20487379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Nov;65(20):5743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25165148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):21002-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18093929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Mar;33(3):483-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24337818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Aug;69:27-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23707882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Oct;7(5):506-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(3):325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11844109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jun;129(2):706-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12068113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1310-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2012 Nov;102(11):1094-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22877313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Apr;19(4):1403-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Apr;36(4):757-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22994555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2011 Jan;38(1):417-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Apr;34(2):217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12694596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Nov;64(16):5085-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2007 Aug;164(8):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Apr 3;280(5360):104-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Oct;9(10):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Apr;27(4):795-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18183400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Feb 15;431(3):409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23333328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2008 Jun;6(5):486-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18384508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Jun;226(1):125-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17310369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 2000 Feb;263(1):30-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10732671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jun 03;9:68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19493335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Jul 1;11(13):1621-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9224713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2010 Dec;37(8):3735-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20217243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jan;72(1-2):215-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19902151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Oct 15;15(20):5690-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8896462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e54185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23342101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):366-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17644023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Nov;31(11):2109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22847334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Nov;232(6):1325-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20811906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Dec;124(4):1854-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(4):751-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9873-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15205481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2006 Aug 31;22(1):58-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16951551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1996 Aug;9(6):464-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 1991;11(2):95-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1946347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Nov 15;441(2):476-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24383079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007 Jan 10;7:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17214894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Jul;215(3):387-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12111219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lu, Jiang" sort="Lu, Jiang" uniqKey="Lu J" first="Jiang" last="Lu">Jiang Lu</name>
<name sortKey="Wu, Jiao" sort="Wu, Jiao" uniqKey="Wu J" first="Jiao" last="Wu">Jiao Wu</name>
<name sortKey="Yin, Ling" sort="Yin, Ling" uniqKey="Yin L" first="Ling" last="Yin">Ling Yin</name>
<name sortKey="Zhang, Yali" sort="Zhang, Yali" uniqKey="Zhang Y" first="Yali" last="Zhang">Yali Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Jiang, Wenming" sort="Jiang, Wenming" uniqKey="Jiang W" first="Wenming" last="Jiang">Wenming Jiang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000439 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000439 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25643917
   |texte=   Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25643917" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020